
TEDUAssistant
CMPE 492 Senior Project II
Low-Level Design Report

Advisor Yücel Çimtay

Jury Aslı Gençtav
EminKuğu

Members Deniz Akşimşek
Enes Akmil
GizemKurtcuoğlu
Mehmet Batuhan Şenol



Introduction
TEDUAssistant is a voice-controlled, natural-language query system (i.e.: voice
assistant, chatbot) whichwill answer common questions for university students,
academic and administrative sta�where answers are available but di�cult to find or
inconvenient. It will provide easy access to data published on universitywebsites.

Previous reports about TEDUAssistant can be accessed on our project website [1].

�e purpose of TEDUAssistant is tomake information provided by TEDUniversity to
its students and sta�more accessible.Wewill achieve this by allowing users to query
information using their voice and natural language. It should be possible to ask for and
receive information through speech or text, for the user’s convenience and ease of
access.

Interface documentation guidelines
Because the server and clientwill be implemented in Python and JavaScript
respectively, wewill specify interfaces using Python type hint syntax for server
modules andTypeScript syntax for clientmodules.

Object design trade-o�s
In the construction of our system,we are aiming tomaximize the following attributes:

Extensibility. It should takeminimal e�ort to add features to the system. Clear
extension points should be defined that allows extensions to amodule to be decoupled.
In particular for this system, it should be possible to addmore language support and
more kinds of questions that can be answered.

Maintainability:�e system should not be di�cult tomaintain.When defects are
found, fixing those defects should be possible with localized changes. Fixing defects
and adding features should not introduce spurious defects.

Resilience:�e systemmust deal with invalid input fromusers and changes to other
systems it depends on. Because our systemdepends onmany systems administered by



TEDU, the system should, to the extent possible, continue functioningwhen changes
aremade to these systems.
Usability:�e system should be easy to use. Users should be able to know the
capabilities of the system and how to use these capabilities to fulfill their needs
without needing instruction.�ey should not feel confused or frustratedwhile using
the system.�ey should be able to give feedback about the system.

Performance: Firstly, the system should respond to all user interaction on a timely
basis. Secondly, the systemmust be able to functionwith aminimal computational
expense in terms ofmemory use, CPU time and power consumption. To achieve this,
we plan tomake extensive use of caching andmemoization.�is is likely to increase
the complexity of our system,which is a tradeo�with our goal ofmaintainability.

Availability: Ideally, the system should be ready to respond to users at all times to
build user confidence. To achieve this, we need to ensure high uptime.

Security&privacy:�e systemmust not provide information to userswho are not
authorized to see it. It should alsomake sure that users’ questions are not intercepted
by any third parties. To this end, our systemwill take a conservative approach and
trade o� versatility for security by only providing information that is readily publicly
available on universitywebsites.

Definitions, acronyms, and abbreviations
Follow-UpQuestion: questions asked by the system to the userwhenmore
information is required to answer the user’s question
REST: Representational State Transfer
HATEOAS:Hypermedia as the Engine of Application State
HTTP:Hypertext Transfer Protocol
TLS: Transport Layer Security
TEDU: TEDUniversity



Overview

Server-sidemodules
�e server side of the application uses a layered architecture, where every layer only
depends on lower layers.�is discourages brittleness and avoidsmixing levels of
abstraction. Dependency injectionwill be used to connect layers together.

HTTP layer
Web request handling

Responsegeneration layer
NLP
Question types

Webscraping layer
HTML scraping
PDF scraping

Table: Layered architecture of TEDUAssistant server, from our presentation [2]

Webmodule:�ismodule is responsible for providing theweb-based interface to the
application. It consists of HTTP handlers andHTML templates. A�er deserializing and
validating input, it will pass it along to the response generationmodule.�e Flask
framework [3] will be used to implement thismodule.

Response generationmodule:�ismodule is themost significant in TEDUAssistant,
as it’s responsible for parsing and responding to questions. Its entry point is the
respond function, whichwill receive a question as plain text and optionally a context
object, and return an answer and the new context.�e context object serves to hold
data that needs to be retained between questions to form a longer conversation.

Web scrapingmodule:�eweb scraping layer is responsible for fetching raw data
from the universitywebsite, parsing it and returning the requested parts.Wewill need
two scraping components at first: HTML scraper and PDF scraper. Due to the
di�erences between these formats and the situations inwhich they are used, these
componentswill not necessarily have a common superclass.�ismodulewill also
contain themechanism for fetching the data to scrape.



Client-sidemodules
TEDUAssistantwill include a small amount of client-side code, asmost of the
functionality is implemented in the server. Our client-side components are
implemented to be reusable, withmost application-specific code in the server.

Speech recognizer element: Implements a speech recognitionUI using Custom
Elements [4].�e recognitionwill be handled by theWeb Speech API [5]. It will start
recognizing audiowhen actuated by the user and emit an event [6] when a string is
recognized. Eventswill be themain architecturalmechanism in the client.We
currently have a prototype implementation of the speech recognizer, with a live demo
on https://speech-recognizer-element.netlify.app/ (Only Google Chrome is supported).

Answer view:�is componentwill take responses sent by the server in our format and
display them to the user by converting them toHTML elements. It will also emit events
when a follow-up answer or other interactive element is clicked.

Main program:�eclient’smain programorchestrates the client components and
communicates with the server. It will listen to events from the speech recognizer and
when a question is recognized, send it to the server. A�er receiving a response to the
server, it will deserialize it and pass it to the answer view. It will also listen to the
answer view’s events to send follow-up answers to the server.

https://speech-recognizer-element.netlify.app/


Class and function interfaces

Figure: Diagram of systemmodules and components.

Webmodule
@app.get("/")
def home(): ...

Serves the home page of the application from a template.



@app.post("/ask")
def ask_question(): ...

Receives a question and context from the request body. Parses and validates questions
and context, passes them to the response generation layer and returns the response in
JSON format.

@app.post("/rate")
def rating():

Receives ratings for responses.�ehandling of these ratings is TBD.

Response generationmodule
def respond(

question: str, context: Context
) -> tuple[Response, Context]: ...

Responds to a question. Delegates to the various responders in the application.�e
context object contains answers to any follow-up questions asked previously in the
conversation.�e return value contains a Response aswell as a new context, since
being asked a question can provide new information that alters the context.

class Responder:
def can_answer(question: str, context: Context) -> bool: ...
def answer(question: str, context: Context) -> Response: ...

�e Responder interface represents a kind of question that our system can respond to.
Each responder has the can_answermethod that checkswhether this responder can
respond to a particular question, and the answermethod that actually generates the
response.�e can_answermethod is used by the respond function to determine
which responder to use in answering a question.

class InternshipResponder(Responder):

�e InternshipResponder directs users to their internship coordinator.

class StaffInfoResponder(Responder):

�eSta�InfoResponder gives basic info about academic and administrative sta� from
public profiles.

class FinalExamsResponder(Responder):

�eFinalExamsResponder provides dates of final exams.



class AcademicCalendarResponder(Responder):

�eAcademicCalendarResponder provides dates from the academic calendar.

class DepartmentInfoResponder(Responder):

�eDepartmentInfoResponder gives information about departments and faculties,
such as sta�, contact information and courses o�ered.

class OpenedCoursesResponder(Responder):

�eOpenedCoursesResponder provides the list of opened courses.

class Response:
content: str

�eResponse class represents a response to a user question, and it can also be a request
formore information (a follow-up question).

class FollowUpQuestion(Response):
options: list[str]

A follow-up question has a predetermined list of answers that the user can choose.

Web scrapingmodule
class Scraper:

def fetch(url: str) -> bytearray: ...

�e scraper base class includes data fetching functionality.

class HtmlScraper(Scraper):
def __init__(url: str): ...
def find(selector: str) -> Element: ...

�e HtmlScraper class allows users to fetchHTMLdata and extract information from
it.�e findmethod allows finding elementswithin a document using CSS selectors or
XPath. It returns the element representation used by the underlying library (TBD).

class PdfScraper(Scraper):

�ePdfScraper class is for extracting information fromPDFs published on thewebsite.
Its exact design is to be determined.



Sample use cases
Internship use case:

● User presses the speech button and says: “Who can I ask aboutmy internship?”.
● Speech recognizer element emits event.
● Clientmain program sends request to /ask endpoint of the server.
● ask_question function parses the question, and passes it to the respond
function.

● respond function finds the appropriate responder (InternshipResponder).
● InternshipResponder looks at the context aswell as the question content for
the user's department. Not finding it, it returns a follow-up question as a
response and a context containing the current question so that it can be
answered laterwhen all necessary information is available.

● ask_question serializes this response and context and returns it to the client.
● On the client, the answer view shows the follow up question to the user.
● Users pick their department.
● Answer view emits an event.
● Clientmain program receives the event andmakes another request to /ask,
with both the user’s choice and the context previously returned.

● �e ask_question function calls the respond function again, which sees the
original question in the context and passes the question to the
InternshipResponder again.

● InternshipResponder can now add the user’s department to the context.
● InternshipResponder uses the HtmlScraperwhichwas passed to it at
construction time to fetch and parse the relevant page on the tedu.edu.tr
website. It finds the internship coordinator for the user’s department and
generates a response.

● ask_question serializes this response to JSON and sends it to the client.
● �eanswer view presents the response.
● �euser knowswho to consult for internship questions.

References
[1] Şenol,M.B. &Kurtcuoğlu, G. &Akşimşek, D. &Akmil, E., (2022), “TEDU

Assistant—Final Project,” https://tedu-cmpe491-group10.netlify.app/.

https://tedu-cmpe491-group10.netlify.app/reports/proposal.pdf


[2] Şenol,M.B. &Kurtcuoğlu, G. &Akşimşek, D. &Akmil, E., (2023), “TEDU
Assistant—CMPE 491 Project Presentation,”
https://docs.google.com/presentation/d/e/2PACX-1vSL3Q_06zQRSkKrzSguYNr
pfn7UNzdJQhZJr0XiDNSaiUcLF-NSfJ9UETyEEcefoZ1jrSqbEWyiW8yK/pub?st
art=false&loop=false&delayms=3000.

[3] “Welcome to Flask—Flask Documentation (2.2.x)”,
https://flask.palletsprojects.com/en/2.2.x/.

[4] WHATWG, “4.13.4�eCustomElementRegistry interface,” in “HTML
Standard,”
https://html.spec.whatwg.org/multipage/custom-elements.html#custom-elem
ents-api.

[5] WICG, (2020), “Web Speech API,” https://wicg.github.io/speech-api/.

[6] WHATWG, “2.2. Interface `Event`,” in “DOMStandard,”
https://dom.spec.whatwg.org/#interface-event.

https://docs.google.com/presentation/d/e/2PACX-1vSL3Q_06zQRSkKrzSguYNrpfn7UNzdJQhZJr0XiDNSaiUcLF-NSfJ9UETyEEcefoZ1jrSqbEWyiW8yK/pub?start=false&loop=false&delayms=3000
https://docs.google.com/presentation/d/e/2PACX-1vSL3Q_06zQRSkKrzSguYNrpfn7UNzdJQhZJr0XiDNSaiUcLF-NSfJ9UETyEEcefoZ1jrSqbEWyiW8yK/pub?start=false&loop=false&delayms=3000
https://docs.google.com/presentation/d/e/2PACX-1vSL3Q_06zQRSkKrzSguYNrpfn7UNzdJQhZJr0XiDNSaiUcLF-NSfJ9UETyEEcefoZ1jrSqbEWyiW8yK/pub?start=false&loop=false&delayms=3000
https://flask.palletsprojects.com/en/2.2.x/
https://html.spec.whatwg.org/multipage/custom-elements.html#custom-elements-api
https://html.spec.whatwg.org/multipage/custom-elements.html#custom-elements-api
https://wicg.github.io/speech-api/
https://dom.spec.whatwg.org/#interface-event

