
TEDU Assistant
CMPE 491 Senior Project I
High-Level Design Report

Advisor Yücel Çimtay

Jury Aslı Gençtav
Emin Kuğu

Members Deniz Akşimşek
Enes Akmil
Gizem Kurtcuoğlu
Mehmet Batuhan Şenol

1



Contents
Contents 2

Introduction 3

Purpose of the system 3

Design goals 3

Definitions, acronyms, and abbreviations 4

Overview 4

Proposed software architecture 4

Overview 4

Subsystem decomposition 5

Hardware/software mapping 5

Persistent data management 5

Access control and security 6

Global software control 6

Boundary conditions 6

Initialization 6

Termination 6

Failure 6

Subsystem services 7

Client 7

Server 8

HTTP layer 8

Response generation 9

Web scraping 9

Glossary 10

References 11

2



Introduction
TEDU Assistant is a voice-controlled, natural-language query system (i.e.: voice
assistant, chatbot) which will answer common questions for university students,
academic and administrative sta� where answers are available but di�cult to find
or inconvenient. It will provide easy access to data published on university
websites. [1]

Purpose of the system
The purpose of TEDU Assistant is to make information provided by TED University
to its students and sta� more accessible. We will achieve this by allowing users to
query information using their voice and natural language. It should be possible to
ask for and receive information through speech or text, for the user’s convenience
and ease of access.

Design goals
Extensibility. It should take minimal e�ort to add features to the system. Clear
extension points should be defined that allows extensions to a module to be
decoupled. In particular for this system, it should be possible to add more language
support and more kinds of questions that can be answered.

Maintainability. The system should not be di�cult to maintain. When defects are
found, fixing those defects should be possible with localized changes. Fixing
defects and adding features should not introduce spurious defects.

Resilience. The system must deal with invalid input from users and changes to
other systems it depends on. Because our system depends on many systems
administered by TEDU, the system should, to the extent possible, continue
functioning when changes are made to these systems.

Usability. The system should be easy to use. Users should be able to know the
capabilities of the system and how to use these capabilities to fulfill their needs
without needing instruction. They should not feel confused or frustrated while
using the system. They should be able to give feedback about the system.

Performance. Firstly, the system should respond to all user interaction on a timely
basis. Secondly, the system must be able to function with a minimal computational
expense in terms of memory use, CPU time and power consumption. To achieve
this, we plan to make extensive use of caching and memoization.

Availability. Ideally, the system should be ready to respond to users at all times to
build user confidence. To achieve this, we need to ensure high uptime.

3



Security & privacy. The system must not provide information to users who are not
authorized to see it. It should also make sure that users’ questions are not
intercepted by any third parties. Our system will take a conservative approach to
security by only providing information that is readily publicly available on
university websites.

Definitions, acronyms, and abbreviations
Follow-Up Question: questions asked by the system to the user when more
information is required to answer the user’s question

REST: Representational State Transfer [3]

HATEOAS: Hypermedia as the Engine of Application State

HTTP: Hypertext Transfer Protocol

TLS: Transport Layer Security

TEDU: TED University

Overview
TEDU Assistant is a Web application using NLP, the Web Speech API [2] and web
scraping to provide a voice assistant experience. Users ask questions via speech, or
text if they prefer. The voice input is recognized into text on the client, analyzed on
the server and a response is generated by fetching the wanted information from
TED University websites. This way, users can ask for the specific information they
need in the way they understand, instead of needing to navigate the organizational
structure of relevant web pages. Using the Web Speech API means that we will be
able to use speech synthesis and voice recognition capabilities that are built into
the user’s device, instead of having to replicate these capabilities.

Proposed software architecture

Overview
As part of TEDU Assistant’s architecture, we will decompose it into multiple
subsystems, each one having a single responsibility, and restrict the interaction
between subsystems to avoid tight coupling. Each subsystem can be built with the
technologies most appropriate for its purpose (with some restrictions, for easy
integration of subsystems). We take into consideration the constraints of our
environment, such as the web using a client/server model. We also take inspiration

4



from writings on software architecture, such as “Architectural Styles and the
Design of Network-based Software Architectures” by Roy Fielding [3].

Subsystem decomposition
We use a client-server, request-response, layered architecture. The interface
between the client and server is a REST [3] interface where the client sends
questions as text (having recognized voice) and receives answers and follow-up
questions. We have preferred to move responsibilities mostly to the server, for
instance, the server will respond to questions with answers in a format that
contains information about how the answer is presented.

Deriving from the idea of hypertext/hypermedia, the responses can also contain
follow-up questions and other interactive elements. These elements can link the
response to further responses. The user can complete linear flows of providing
necessary details to get a specific piece of information, or explore information in a
free-form manner.

The server subsystem is then further decomposed into the HTTP layer, question
response generation and web scraping. The HTTP layer includes the webserver and
views that construct domain objects from HTTP requests, and present responses.
The HTTP layer only communicates directly with the response generation layer
(through method calls) and the client layer (through HTTP). By ensuring each layer
communicates only with adjacent layers, we create a linear order of layers with
clear flow of data.

Hardware/software mapping
For the server, we will use the Python programming language and the Flask [4]
web framework.

The client and server will communicate over HTTP via a REST API as mentioned
previously. As opposed to many other “REST” APIs [5], we plan to use all
constraints of the style, including HATEOAS [6].

The client will be a Web application that will run on the user’s own device. It will
require a microphone on the device. We also rely on the Web browser on the device
to support the Web Speech API [2].

Persistent data management
Subsystems may need to persist or cache information. For this purpose, a
PostgreSQL (or similar SQL) database or a Redis key-value store may be used.

5



Access control and security
The system will not require signup or authorization. This will radically simplify the
usage as well as reducing the implementation cost. This is possible as the system
only provides information that is already publicly available.

For security, we will ensure that all client-server communication happens with
TLS.

Global software control
In TEDU Assistant, there is a strict separation of responsibilities between server
and client that avoids any components being shared or replicated between them. As
a result of this, the server and client have separate architectures.

On the server, we have a layered architecture. We will use Python modules [10] to
separate the layers. A rule we will follow to keep the layers in order is to make sure
that each layer only communicates with the layer above and the layer below. For
this communication, simple function or method calls will be used, with the HTTP
layer that handles user requests being the “entry point”. The server will also make
many HTTP requests to other servers, particularly the university website, and thus
we may make use of Python’s asynchronous features [11] to make sure these
requests do not block operations.

On the client, we use browser events [8] and custom events [9] as the main
mechanism of connecting subsystems.

Boundary conditions

Initialization
All processing in TEDU Assistant is initiated by an HTTP request. The user can
initialize the application by visiting the root URL on their browser. They can
continue their session by interacting with the user interface (asking questions,
answering follow-up questions, assigning ratings, &c.)

Termination
In REST-ful Web applications, each request to the server is self-contained. As such
the user does not need to explicitly terminate TEDU Assistant — they can simply
stop interacting and no more processing will happen for their session.

Failure
Lack of internet connectivity can result in failures because most of TEDU
Assistant's features depend on this connection to function.

6



Subsystem services

Figure 1: Subsystems and components of TEDU Assistant

Client
The client is an HTML & JavaScript application. It can be used on any device with a
browser. It can also be converted into a mobile app via hybrid app technologies
such as Apache Cordova or similar.

7



By moving as many responsibilities to the server as we reasonably can, we are able
to keep the client very simple. As a result, we will not need any JavaScript
framework and will construct the client from only a few components.

The speech recognizer element will encapsulate the speech recognition UI using
Custom Elements [7]. It will start recognizing audio when actuated and emit events
[8] when a string is recognized. Events will be the main architectural mechanism in
the client.

The answer view will accept responses to questions in our format and display them
to the user by converting them to HTML elements. It will also emit events when a
follow-up answer or similar interactive element is clicked.

The client entry point is responsible for communication between these two client
components and the server. It will listen to events from the speech recognizer and
when a question is complete, send it to the server. After receiving a response to the
server, it will deserialize it and pass it to the answer view to present to the user. It
will also listen to the answer view’s events to send follow-up answers to the server.

Server
The server holds the majority of the system’s functionality and thus needs to be
split into multiple modules. We have arranged the modules in a layered manner
where each layer only communicates to the layer above and the layer below. This
creates loose coupling and clear data flow. The topmost layer is the client, followed
by the server’s HTTP layer, response generation and web scraping.

There will be a few services that will be needed in multiple layers, such as
persistent data storage. We plan on using dependency injection methods for such
services.

HTTP layer
The HTTP layer deals with the web-related aspects of the application. It acts as a
translation layer between HTML or JSON payloads and domain objects. It will also
be the only part of the system that depends on Flask, meaning the rest of the server
could be remodeled as a non-web application. It has three sub-components:

Views. This component consists of HTML templates and a static file server for
delivering the client application to users’ devices.

Question Controller. This section deals with responding to questions. It will accept
requests containing questions in JSON format, and after deserializing, pass them
on to the response generation layer. After a response is generated, it will respond
to the HTTP request with the JSON representation of this response.

8



A contract needs to exist between the question controller and the client about the
format of questions and answers. This format will be able to represent rich content
as well as follow-up questions and answers.

Response generation
We will create a Responder object for each kind of question TEDU Assistant is able to
answer. The Responder interface is as follows:

canAnswer(question: Question) -> bool
answer(question: Question) -> Response

We plan to also have a Responder abstract base class that contains common
behaviors for all questions, such as how to respond when an adequate answer
cannot be provided.

The Responders object is the registry of these Responder objects. When given a
question, it can query the responders and forward the question to the responder
that can answer it.

Responders may invoke the web scraping layer to acquire information. For
instance, AcademicCalendarResponder will ask the web scraping layer to scrape the
academic calendar page (https://www.tedu.edu.tr/en/academic-calendar) and
extract data from the tables (CSS selector .academic-calendar-view > table),
then search through this data to find the date that the user asked for. Sophisticated
responders such as this one may have a separate data access component, keeping
only response generation code in the main Responder, whereas for others this
might not be necessary.

Web scraping
The web scraping layer is responsible for fetching raw data from the university
website, parsing it and returning the requested parts. We will need two scraping
components at first: HTML scraper and PDF scraper. Due to the di�erences
between these formats and the situations in which they are used, these
components will not necessarily have a common superclass.

While building these components, we expect to use a combination of o�-the-shelf
libraries and custom code for TEDU Assistant’s scraping needs.

It’s important that this subsystem is easy to modify and resilient to unexpected
situations. This is because it interacts directly with the university website, an
external system with which we have no contract.

9

https://www.tedu.edu.tr/en/academic-calendar


Glossary
Chatbot: a software system accepting questions from users and automatically
writing responses in a way that mimics human conversation

Hybrid App: a software application, usually for mobile devices, that combines
elements of both native apps (apps made with the platform’s toolkit) and web
applications

NLP: Natural Language Processing

Voice Assistant: a software system assisting users in their day-to-day tasks that
can be controlled by spoken commands

Web Scraping: extracting data from websites, usually by parsing HTML

10



References
[1] Şenol, M.B. & Kurtcuoğlu, G. & Akşimşek, D. & Akmil, E., (2022), “Final

Project Proposal—TEDU Assistant,”
https://tedu-cmpe491-group10.netlify.app/
reports/proposal.pdf.

[2] WICG, (2020), “Web Speech API,” https://wicg.github.io/speech-api/.

[3] Fielding, R., (2000), “Architectural Styles and the Design of Network-based
Software Architectures,” CA: University of California, Irvine,
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

[4] “Welcome to Flask — Flask Documentation (2.2.x)”,
https://flask.palletsprojects.com/en/2.2.x/.

[5] htmx, “How Did REST Come To Mean The Opposite of REST?”
https://htmx.org/essays/how-did-rest-come-to-mean-the-opposite-of-r
est/.

[6] htmx, “HATEOAS,” https://htmx.org/essays/hateoas/.

[7] WHATWG, “4.13.4 The CustomElementRegistry interface,” in “HTML
Standard,”
https://html.spec.whatwg.org/multipage/custom-elements.html#custom-e
lements-api.

[8] WHATWG, “2.2. Interface `Event`,” in “DOM Standard,”
https://dom.spec.whatwg.org/#interface-event.

[9] WHATWG, “2.4. Interface `CustomEvent`,” in “DOM Standard,”
https://dom.spec.whatwg.org/#interface-customevent.

[10] Python Software Foundation, “6. Modules,” in “Python 3.11.1
Documentation,” https://docs.python.org/3/tutorial/modules.html.

[11] Python Software Foundation, “8.9.1. Coroutine function definition,” in
“Python 3.11.1 Documentation,”
https://docs.python.org/3/reference/compound_stmts.html#async-def.

11

https://tedu-cmpe491-group10.netlify.app/reports/proposal.pdf
https://tedu-cmpe491-group10.netlify.app/reports/proposal.pdf
https://wicg.github.io/speech-api/
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://flask.palletsprojects.com/en/2.2.x/
https://htmx.org/essays/how-did-rest-come-to-mean-the-opposite-of-rest/
https://htmx.org/essays/how-did-rest-come-to-mean-the-opposite-of-rest/
https://htmx.org/essays/hateoas/
https://html.spec.whatwg.org/multipage/custom-elements.html#custom-elements-api
https://html.spec.whatwg.org/multipage/custom-elements.html#custom-elements-api
https://dom.spec.whatwg.org/#interface-event
https://dom.spec.whatwg.org/#interface-customevent
https://docs.python.org/3/tutorial/modules.html
https://docs.python.org/3/reference/compound_stmts.html#async-def

